Name of Programme	: EE / ET / CM / IT
Programme Code	: 02/03/06/07
Name of Course	: ENGINEERING MATHEMATICS III
Course Code	: SC282

Teaching Scheme:

	Hours / Week	Total Hours
Theory	02	32
Term work / Practical	01	16

Evaluation:

Progressive Assessment	S	emester End	Examination	1
	Theory	Practical	Oral	Term work
Two class tests of 60	Hrs			
	80			
1	0	TheoryTwo class tests of 60Hrsnin. duration	TheoryPracticalTwo class tests of 60Hrsnin. duration	TheoryPracticalOralTwo class tests of 60Hrsnin. duration

Rationale:

.

• The student shall learn various techniques in integration and differential equations and use these techniques to their related Engineering problems.

Course Outcomes:

After completing this course students will be able to

- **1.** Apply the definition of integration as inverse of differentiation to solve problems.
- 2. Apply various methods of integration..
- 3. Apply Mathematical principle to solve engineering problems.
- 4. Apply differential equation for solving problems in different engineering fields.
- 5. Apply the knowledge of Laplace transform to solve engineering problems.
- 6. Draw and come to a valid conclusion.
- 7. Locate the exceptional and critical points in an engineering system.

Course Contents: (Course Name: Engineering Mathematics III – SC282)

A. Theory :

Specific Learning Outcomes (Cognitive Domain)	Topics and subtopics	Hrs
Units 1 : Integration		10
 Define integration as anti derivative. Integrate function using different method 	1.1 Definitions, standard formulae, integration of algebraic sum of two or more functions, integration by substitutions and by trigonometric transformations, integration of $1/ax^2+bx+c$, $1/\sqrt{ax^2+bx+c}$, integration by parts, integration by partial fractions	
Unit 2: Definite integrals		04
1 Solve problems on definite integrals using the properties	2.1 Definition and properties of definite integrals Example based on these properties.	
Unit 3: Applications of integration	D n	04
1. Find mean and R.M.S. value	3.1Mean value and root mean square value.	-
Unit 4: Differential Equations		05
 Define order and degree of differential equation Solve the differential equation of first order and first degree Solve different engineering problems using differential equation 	 4.2 Definition, order and degree of differential equations. Formation of differential equations. Solution of differential equations : (using following methods) i) Variable separable (ii) Reducible to variable separable. (iii) Homogeneous differential equations. (iv) Exact diff. equations. (v) Linear differential equations. 	
Unit 5: Complex number		05
 Define complex number Define modulus ad amplitude Solve examples on complex number using De Moivre's theorem Find roots of complex number. 	5.1Definition and algebra of a complex numbers. Geometrical representation (Argand's diagram), modulus and amplitude of a complex number. De Moivre's theorem (without proof), roots of complex number.	
Unit 6:Laplace Transform		04
 Define Laplace transform, inverse transform, and Convolution theorem. Solve examples on L.T. and Inverse L.T. Solve differential equation using L.T. 	6.1Definition, Laplace Transforms of elementary functions, important properties of Laplace Transforms, Inverse of Laplace Transforms, Convolution Theorem and application of Laplace Transform for solving differential equations.	
	Total Hrs.	32

(Course Name: Engineering Mathematics III – SC282)

Practical No.	Specific Learning Outcomes (Psychomotor Domain)	Units	Hrs.
1.	Integration based on standard formulae.		1
2.	Integration by substitution method	Integration	1
3.	Integration on the type $1/ax^2+bx+c$, $1/\sqrt{ax^2+bx+c}$, $1/asinx+bcosx+c$, $1/asin^2x+bcos^2x+c$.	Integration	1
4.	Integration using By Part Rule and integration by partial fraction method.		1
5	Examples on Definite integral and it's properties	Definite integrals.	1
6.	Examples on Mean and R.M.S. value	Applications of integration	1
7.	Examples on order ,degree and formation of differential equation.	Differential Equation	1
8.	Solution of first order first degree D.E. using various methods.		1
9	Examples on algebra of complex number and determination of modulus and amplitude.	Complex Number	1
10	Examples on De Moivre's theorem and roots of complex number.	Complex Number	1
11	Examples on Laplace transform and inverse Laplace transform.	Lonloop Tronsform	1
12	Examples on Convolution theorem and Solution of D.E. by Laplace transform.	Laplace Transform	1
	Skill Test		02
		Total Hrs.	14

B. List of Practicals /Laboratory Experiences/Assignments:

Instructional Strategy:

Sr.No	Торіс	Instructional Strategy
1	Integration	Class room teaching, chalk board
2	Definite integration	Class room teaching, chalk board
3	Applications of	Class room teaching, chalk board
	integration	
4	Differential equation	Class room teaching, chalk board
5	Complex number	Class room teaching, chalk board
6	Laplace transform	Class room teaching, chalk board

Unit	Units	Levels f	Total		
No.		R	U	Α	Marks
01	Integration	08(04)	16(08)	00(00)	24(12)
02	Definite Integrals	04(04)	04(00)	00(00)	08(04)
03	Applications of integration	00(00)	00(00)	08(04)	08(04)
04	Differential Equation	04(00)	08(04)	04(04)	16(08)
05	Complex number	04(04)	04(02)	04(00)	12(06)
06	Laplace transform	04(02)	04(00)	04(04)	12(06)
	Total	24(14)	36(18)	20(08)	80(40)

Specification Table for Theory Paper:

R-Remember

```
U – Understand
```

A – Analyze / Apply

Question Paper Profile For Theory Paper:

Q.]	Bit	1]	Bit 2	2		Bit	3]	Bit 4	4]	Bit s	5]	Bit	6	ontion
No	Т	L	Μ	Т	L	Μ	Т	L	Μ	Т	L	Μ	Т	L	Μ	Т	L	Μ	option
01	1	R	4	1	R	4	1	U	4	1	U	4	1	U	4	1	U	4	4/6
02	1	U	4	2	R	4	2	R	4	2	U	4	3	А	4	3	А	4	4/6
03	4	R	4	4	U	4	4	U	4	4	U	4	4	А	4	4	Α	4	4/6
04	5	R	4	5	R	4	5	R	4	6	А	4	6	Α	4	6	Α	4	4/6
05	1	R	2	1	R	2	1	U	2	1	U	2	3	Α	2	3	Α	2	<u>8/12</u>
	5	U	2	5	U	2	5	U	2	6	R	2	6	R	2	6	R	2	0/12

T= Unit/Topic Number L= Level of Question

M = Marks

R-Remember

U-Understand

A-Analyze/ Apply

(Course Name: Engineering Mathematics III – SC282)

Assessment and Evaluation Scheme:

		What	To Wh om	Frequency	Max Mar ks	Min Mar ks	Evidence Collected	Course Outcome s
A	Tq Ressurent)			Two PT (average of two tests will be computed)	20		Test Answer sheets	1,2,3,4,5, 6,7
ent Theory	CA (Continuous Assessment)	Class Room Assignment s	Students	Assignments			Assignme nt Book	1,2,3,4,5, 6,7
essm	(Cor			TOTAL	20			
Direct Assessment	TEE (Term End Examination)	End Exam	Students	End Of the Course	80	28	Theory Answer sheets	1,2,3,4,5, 6,7
	us ht)		s					
ent Practical	CA (Continuous Assessment)		Students					
Direct Assessment Practical	TEE (Term End Examination)		Students					
ssment	Student Feedback on course End Of Course			After First PT Student feed back form				
Indirect Asse			Stud ents	End Of The Course	(Juestion	inaires	

(Course Name: Engineering Mathematics III – SC282)

S.N.DescriptionMax. Marks1Observations,N.A.2Calculations and ResultN.A.3Viva voceN.A.Image: Total control cont

Scheme Of Practical Evaluation:

Mapping Course Outcomes With Program Outcomes:

Course		Program Outcomes (POs)											
Outcomes	1	2	3	4	5	6	7	8	9	10			
1	3	3	2	1	1	1	1	3	1	2			
2	3	3	2	1	1	1	1	2	1	2			
3	3	2	3	2	1	1	2	2	1	3			
4	3	2	3	2	1	1	2	2	1	3			
5	3	2	3	2	1	1	2	2	1	3			
6	3	2	2	1	1	1	2	2	2	1			
7	2	2	2	1	1	1	2	2	2	1			

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Reference & Text Books:

S.N.	Title	Author, Publisher, Edition and Year of publication	ISBN Number
1	Higher Engineering Mathematics	Khanna Publishers, New Delhi Grewal B.S	
2	Engineering Mathematics Vol.II	Satya Prakashan, New Delhi Vishwanath	
3	Mathematics for Polytechnic students	Pune Vidyarthi Griha Prakashan S.P. Deshpande	
4	Engineering Mathematics Part II	S. Chand & Co. Ltd. Delhi ,H.K. Dass	

S.N	Name	Designation	Institute / Industry
1.		Chairman PBOS	
2.	Shri. V.B.Shinde	Faculty from Institute	Govt. Polytechnic ,Pune
3.		Faculty from Institute	
4.		Consultant from Industry	
5.		Faculty from nearby Institute	
6.		R.B.T.E.Representative	

List Of Experts & Teachers Who Contributed For This Curriculum:

Prepared by

() (Member Secretary PBOS) (Chairman PBOS	()	(Member Secretary PBOS)	(Chairman PBOS)
--	-----	-------------------------	-----------------